SlothBot is a slow-moving and energy-efficient robot that can linger in the trees to monitor animals, plants, and the environment below, researchers report.
For the next several months, visitors to the Atlanta Botanical Garden will be able to observe the testing of the new high-tech tool in the battle to save some of the world’s most endangered species. Researchers are testing the SlothBot near the Garden’s popular Canopy Walk.
Built to take advantage of the low-energy lifestyle of real sloths, SlothBot demonstrates how being slow can be ideal for certain applications. Powered by solar panels and using innovative power management technology, SlothBot moves along a cable strung between two large trees as it monitors temperature, weather, carbon dioxide levels, and other information in the Garden’s 30-acre midtown Atlanta forest.
“SlothBot embraces slowness as a design principle,” says Magnus Egerstedt, professor and chair in the Georgia Institute of Technology’s School of Electrical and Computer Engineering.
“That’s not how robots are typically designed today, but being slow and hyper-energy efficient will allow SlothBot to linger in the environment to observe things we can only see by being present continuously for months, or even years.”
About three feet long, SlothBot’s whimsical 3D-printed shell helps protect its motors, gearing, batteries, and sensing equipment from the weather. The robot is programmed to move only when necessary, and will locate sunlight when its batteries need recharging.
At the Atlanta Botanical Garden, SlothBot will operate on a single 100-foot cable, but in larger environmental applications, it will be able to switch from cable to cable to cover more territory.
“The most exciting goal we’ll demonstrate with SlothBot is the union of robotics and technology with conservation,” says Emily Coffey, vice president for conservation and research at the Garden. “We do conservation research on imperiled plants and ecosystems around the world, and SlothBot will help us find new and exciting ways to advance our research and conservation goals.”
SlothBot could help scientists better understand the abiotic factors affecting critical ecosystems, providing a new tool for developing information needed to protect rare species and endangered ecosystems.
“SlothBot could do some of our research remotely and help us understand what’s happening with pollinators, interactions between plants and animals, and other phenomena that are difficult to observe otherwise,” Coffey adds.
“With the rapid loss of biodiversity and with more than a quarter of the world’s plants potentially heading toward extinction, SlothBot offers us another way to work toward conserving those species.”
Inspiration for the robot came from a visit Egerstedt made to a vineyard in Costa Rica where he saw two-toed sloths creeping along overhead wires in their search for food in the tree canopy.
“It turns out that they were strategically slow, which is what we need if we want to deploy robots for long periods of time,” he says.
A few other robotic systems have already demonstrated the value of slowness. Among the best known are the Mars Exploration Rovers that gathered information on the red planet for more than a dozen years.
“Speed wasn’t really all that important to the Mars Rovers,” Egerstedt notes. “But they learned a lot during their leisurely exploration of the planet.”
Beyond conservation, SlothBot could have applications for precision agriculture, where the robot’s camera and other sensors traveling in overhead wires could provide early detection of crop diseases, measure humidity, and watch for insect infestation. After testing in the Atlanta Botanical Garden, the researchers hope to move SlothBot to South America to observe orchid pollination or the lives of endangered frogs.